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Composite structural components may be subjected
to a variety of defects resulting in a sharp reduction in
their load carrying capacity or even catmtrophic
failure. Thus, it is extremely important to have the
means to monitor the degradation suffered by critical
components of a structure for safe operation during its
service life. A nondestructive method based on
ultrmonics  has  recent ly been developwl for the
quantitative evaluation of composite structural
components during service. The experimental part of
the technique uses a two-transducer, pitch-catch type
arrangen)ent to generate a variety of elastic wavess
within the spezimen immersed in water. The rtzorded
reflection data are then rmaly~d  by means of a
theoretical model to back out the relevant properties.
In this paper the method is applied to determine the
stiffne.w  constants of unidirectional graphite/epoxy
materials. The measurements are shown to be efficient
and sufficiently accurate so that it can be used for early
detection of material degradation in composite
structural elements during service.
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All aircraft and aerospace structural components
and their mechanical subcomponents  are subjected to
servics  conditions that lead to a deterioration of their
performance and integrity with time. This is primarily
due to the fact that structural materials suffer
degradation as they age’ resulting in changes in their
properties and reducing their load carrying capacity.
In absence of timely diagnosis of the degree of
deterioration and appropriate intervention, the structure
in qu~stion may suffer catastrophic failure. Factors
that cause materials degradation include extensive
cyclic loading (mechanical and thermal); exposure to
extreme temperatures; excessive humidity, chemical
attack, foreign objwt  impact, rapidly applitxl themud
loading etc.

Composite materials are being used incremingly in
many structures and their subcomponents. Film
reinforced c.omposite.s, e.g., graphite/epoxy are the
most widely used materials in aircraft structures at the
present time. These materials provide a very desirable
combination of toughness, specific strenglh, modulus
and damage tolerance. However, compositrx are
very sensitive to their manufacturing process.:,  service
conditions and the natural environment, either one or
all of which may introduce defects resulting in a
serious degradation of the material. Further, as these
materials age, they will be subject to a variety of
degradations and the need for their evaluation and
repair/rejection will txzome  more and more critical.

A major factor in the expanded use of composites
at low operating costs is adequate. nondwtructive
evaluation (NDE) technology. Development of sound
scienc-e – based techniques to detect hidden, subsurface
damage and material degradation prior to structural
failure is of critical importance for the design and
deployment of aircraft and aerospace structures of the
future. A number of NDE techniques are availaMe for
the inspection of structural components. Some of



the.. . . e.g., X -Ray and Gamma Ray radiography are
of reltitively low sensitivity and are not suitable for the
characterization of material degradation. A more
sensitive radiographic technique, the neutron
radiography, is expensive, nonportable  and is affected
by the presence of hydrogen compounds (e.g., trappd
moisture and sealing materials) in the damagti area.
Electromagnetic methods (e.g., eddy current probes)
work reasonably well for metals but are unsuitable for
nonmetallic composites. The most cost effective and
generally applicable NDE methods are based on
ultrasonics. The conventional pulse – echo and
through – transmission methods are simple to
implement, but they provide only limited information
in the interior of the structure.

Several recently developed ultrasonic techniqu~$
appear to have the potential for improving the
state -- of- the – art in ND13 technology signifrcxurtl  y
through additional research. One of these is the “leaky
I ~mb wave (LLW)” trxhnique  in which the specimen
is inm]crsed  in water  and teskxl by two broadband
ultrasonic transducers in a pitch – catch arrangement,
In this method a variety of waves are generated within
the. specimen and each- of these waves earrie..  specific
information on the characteristics of the material.
Careful analysis of the recorded wavefom~s  can, in
principle, unravel this information.24

In this paper we apply the LLW technique to
determine the stiffness constants of unidirectional
graphite epoxy materials. A systematic procedure
proposed by Kanm,  Mal and Bar-Cohens by inverting
the LJ.W dispersion dala has been found to be an
effective method to characterize the elastic constants of
graphite epoxy composites. We give a brief
dcscript ion of this method, and through a carefully
conducted parameter study, show that only the matrix
dominated stiffness constants Cn, Czl and c~s can be
determined accurately by this method, Ile fiber
dominated constants, c1, and Clz can not be determined
ac.curatcly by this procedure due to the fact that the
Lamb wave velocity is insensitive to cl] and Cll in the
range in which the dispersion data are reliable.

In this paper we describe a new twhnique  which
can bc used to determine all five stiffness constants by
analyzing the times of flight of the recorded reflected
acoustic waves in a pulsed LLW experiment. A
gcrw.ralized  ray theory described in Mal er a16. is used
to identify the modality and ray path of each arrival;
the tinw of flight of each ray is then related to the

elmtic  COmstants of the composite. The accuracy of the
inversion prcaxiure  is discussed.

11. The ~kasonic Experiment

As indicated in the preceding section, the
ultrasonic experirnezrt is based on an oblique
insonification  of the spximen immersed in water. The
acoustic wave is transmitted from a broadband
traducer and the reflected sigtrai is remrded  by a
second  transducer in a pitch-catch arrangement as
shown in Fig. 1.
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Fig. 1. The experimental setup.

A number of flat, broadband tran.sduce.rs with
center frequencies in the range of 0.5 - 10 MHz are
wed  and the signals, transmitted either in tone-burst or
short pulse form are U4 to study the material
characteristics. The tone-burst signals are generated by
a function generator to establish a steady-state
condition. At a specific angle of inciden~ the



reflected signal is remrded  as a function of frequency,
amplified, averaged and digitimd  with the aid of a box-
car gated integrator. The amplitude spectrum of the
rosorded reflected signal is obtained by changing the
frequency of the continuous wave signal. If the angle
of incident, 0, of the acoustic waves is greater than
certain critical value, multi-modal dispersive guided
waves are induced in the spwimen  at a finite number
of speci fic frequencies of excitat ion. The guided waves
propagate in a direction parallel to the surface-s of the
specimen and leak energy into the sumounding  fluid.
The leaky wave-s wmbine  with the specularly reflected
waves to form minima or “nulls- in the amplitude
spectra of the reflewtd  signal at the modal frequencies
of the guided waves. The phase velocity, V, of the
guided waves is related to the angle of incidence, f),
through Snell’s law:

v- ao/sin O

where aO is the. acoustic wave speed in the fluid. Thus,
for a given angle. of incidence, the minima or nulls in
the reflwstion amplitude spedrum  are awociatwl with
the excitation of leaky guided waves in the spuimen.

The dispersion curves for the spximen can be
determined from the amplitude spectra of the reflected
waves Iecorded ass functions of the incident angle. The
material constants and the thickness of the spezimen are
relakxl [o the dispersion curves and can be determined
by fitting the experimental curves with those oh(ained
from thtxrry.

In the sezond  method proposed here, pul.wd signals
arc transmitted in either a pulse-who or pitch-catch
arrangement.  ~ The reflected signals in the time domain
are rezorded and if there is clear separation between
the individual pulses, their measured tinws-of-fligh[ are
used to determine the material constants through
analysis.

~11,. Chariicterimtiorr of Nfaterial  constAmLs f r o m
~eiik~ Lamb Wave  Experiment

As indicated in the introduction, this trxhnique has
been described in an earlier paper.5  The bwsic idea
behind the technique is to obtain the experimental
dispersirm curves of leaky guidul  waves in the
spezimerr from the ultrasonic test. These dispersion
curves can also be obtainwt from theoretical models
using nominal values of the five stiffness constants of
the spwimen. The stiffness constants are then

determined consistent with the ‘k-st  fit= between the
theortiial and measured curves. Fig. 2 is a
comparison of belween  the me.amred  and calculated
dispersion curve.$ for waves propagating at O’, 4Y and
9@ to the fibers  in ● unidirectional graphitdepoxy
laminate of 1 mm thickness. The material cmnstanLs
determined from inversion and used in the calculation
are

c,, == 160.73, c,~ = 6.44, Cn = 13.92,
Cn == 6.92, C5~ == 7.07

where the units are in GPa.

ltcanbe seenthat averygoodfithecn  the
measured and calculated dispersion curves has been
achieved. However, the relation between (he calculated
wave sped and the unknown stiffness constants is
highly nonlinear and the solution to the inversion
problem is nonunique. In addition, each stiffnew
constant h~s a different influence on the. dispersion
curves, and this can affwt  the accuracy of its estimated
value. Data errors also play an important role in the
inversion algorithm. These issues have not been
carefully studied so far.

We have carried out a detailed and systematic
parameter study of the influence of the five stiffness
constants on the dispersion curves. Typical results of
the study are prmented in Figs. 3 arrd 4, for symmetric
and antisymmetric Lamb wa~’cs propagating at 45” to
the fibers; resulls for other propagation directions are
similar. It can be seen that Cz, CL,, c,, have a slrong
influence on the dispersion curves. In addition, the
first symmetric mode at the higher velocity range is
strongly affected by cl). l_he constant Clj does nc~t
seem to have significant influence on any of the
branches. Ilus it appears that [he four constants e,,,
cz~, Cl,, and Cff can he determined accurately from the
dispersion curves. However, at the high velocity range
the incident angle is small ( = 10’), the set Up is
difficult and time consuming, and the errors in locating
the minima in the dispersion curves are large. Thus,
the procedure cat not be used to determine the
constants, cl, and C12 accurately. In the next section we
descnbc  an alternative technique that is ~pable of
giving accurate tstirnates  of all five constants and, at
the same time, is simpler to implement both in the
laboratory and in field environments.
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~V. Characterization of the material  cmtin~m
travel  tirnw of the reflected raw

Bay theory

Consider a unidirectional composite plate with
thickness H and density p immersed in a fluid as shown
in Fig. 1. Assume that the material is homogeneous
and transversely isotropic with symmetry axis along xl
and charactern.ed by five stiffness constants, c11, C12,
CD, C23, and C5$. The C2+uchy’s equation of motion for
the material is
O UJ - prii - 0 (1)

where u, is the displacement vestor and Oij is the stress
tensor. Assume plane wave solutions of (1) in the
form

U i - Ui ~iWI ‘ ~ 4 @J - iur (2)

u’here .&I, k: and k, represent the wavenurnbers along
the xl, .X2 and XJ directions, respectively, and w is the.
circular frequency. From (1), (2) and the constitutive
relations for the material we obtain the following
eigenvalue problem for calculation of the wave speed

u, 1 IIU>. o (3)

u,

al - czllp, az - CJIIP,  a~ -  (ci~ + cJJ/P

04- (C= -  C2~t2P,  a5 -  c,slp (4)

[, - k#.a,  (, -  k@, ( -  k~u

In the ultrasonic experiment, (1 and ~: are related
to the incident angle 0 and fiber orientation @ (Fig. 1)
in the form

(, -  ~’~~?, (Z -  ‘ i n  f’~-@ (5)

where cro is the acoustic wave speed in water ( = 1.485
rnndps). Then ~ is given by the condition of nontrivial
solutions of (3). It can be shown that there are thrtx
values of  (, giving rise to three rays in a given
dirwtion:

{i-{b k-t; (k-l,  Z3)
(6)

The ray diagram for a plme wave transmitted into
a unidirectional composite plate is shown in Fig. Sa,
Here W indicates the first ‘reflected wave from the top
surface of the plate, the rays Iabeltxl  1, 2, 3 are
a-iatd with’ the three transmitted wava$ inside the
plate in a decreasing order of their speeds, the rays
labeled 11, 12, . . . . and 33 are twsociakd with the
w’aves reflected from the bottom of the plate, and T,,
T~, T, indicate the w’aves trartsmitted into the fluid
through the bottom of the plate. From Snell’s  law, the
ve]witi~ V,, V, and the angles Ok, 8, in the diagram are
related through

sin 0 sin~t Sine,
—. . ..- —_. -— - - — . (w

a. vi v,

o R’ 33,  2 3 2 $ , 1 3  1 2  , 1 1
/

;:3&>@l

1
‘\l’ ‘T,”>,

(a)

l . . . . . \ ’ -i
B :

(b)
Fig. 5. Ray diagrams of the retltxted  waves in a
unidirectional composite laminate.
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Two possible ray paths leading to the same point
on the receiver are sketched in Fig. 5b. If we de~ote
the difference in the arrival times between rays along
paths DO and O’BO by rti, then ru can be expressed as

‘N -fk+r,  -r~ (9)

where

H H
fl-— tl - ———.

Vkcosek’ v, Cos 0 \
(lo)

~D _ H(tnAOk + t@r0,)Sh6

ao

From (9)-(1 1), r“ can be expreswxt as

H+H H@nOk + twr O,~in O
% - - ——- . . . .._. -—_._—

Vkcosob V,case, ao (11)
HCOSO, HCOSO,.— +—. - H((h + Z,)Vk v,

It should be noted that equation (11) is valid for
homoge.nous waves only, i.e., when ~~, .([ are real. In
general, there are three possible bulk wave speeds  in a
composite material, and the recorded time history
should contain a reflected pulse from the top surface
followed by nine reflected rays from the bottom of the
plate and their multiple reflections. However, for a
fixed orientation @ to the fibers, a certain homogeneous
wave will become inhomogeneous  or evanescent if the
incident angle. 6 is larger than the critical incident angle
tic. Fig. 6 shows the general feature of this
phenomenon, where the wave is propagating along the
fiber (O =- O“) with different incident angles in the
range @ to 9“. It can be swn that for the pulse-echo (6
= 0“) case only the longitudinal waves exist so that the
reflectd pulses are “ 11”, ‘111 1” etc. As the incident
angle 0 increases, the mode converted reflezkd pulses
bwonw more significant. when  6’ = 8°, all of the
pulses can be identified clearly. When the incident
angle t? > OC (= 8.4°) the pulses  with velocity V1
disappear, and the most prominent pulse is ’22’.

Since the wave speed in a composite material is a
function of the orientation @, it is possible to have
critical values of @ for a fixed value of (?. Thus some
of (he homogeneous waves may become evanescent
when the propagation angle @ is larger or smaller than
a certain critical angle I$C. This is illustrate in Fig. 7,
whtire the reflected pulses near the cntlcal  angle for t?
= 2fY are presented. It can be seen that the reflected
field has a rapid change near the critical angle and
sonic of the pulses disappear when @ is smaller than
the critical angle.

TM Exwrimental Proced ure

With the theory described above, we now describe
the experiments and the awxiatexl  formulas that are
needed  to determine the five stiffness constan~s  with
acxas from one side of the specimen.

● ) Pulse-echo experirnemt

III tiis ~sej [J = t2 = O, so that from (4)<7)

(, -  @z-, (, -  ~,; (12)——— ———-—
c, - pmn - @

and the corresponding eigenvectors  for ~1, JZ, Md {y
are (O, O, 1), (O, 1, O) and (1, O, O). Since only the
longitudinal wave can be transmitted into the fluid from
the composite, only the rays associated with /1 exist.
Hence the first pulse must be 11, and its arrival time is
t,,. From (11) and (12),

-  P/(: - 4#f2/1:1 (13)
%

Thus the pulse-who experiment provides the
constant c::. A simulated result is shown in Fig. 8,
where tl, = 16.83 ps. Then c= is found from (13) to
be 13.92 ps, in agrwment  with the value used in the
theoretical calculation.

b) Oblique insoniflcation with @ = 9@ and incident
angle 0 S O’.

In this case,

t, - Q (~ - sin O/aO
<

h, - Vu], b2 - l/u5, b, - l/a4

and
z; - - ~; + l/f21, ~: - - t: + l/aJ

(1s)

(: - - (~ + l/a4

It should be noted that the eigenvwtor  associated
with /2 is (1, O, O), indicating that the particle motion
is parallel to the fibers, and this transverse wave can
not be transmitted into the fluid. Hence, there is no
pulse associated with the corresponding ray path, and
the arrived pulses should be in the sequenc~ “ 11’,
‘13”, and “33”. In this experiment, the direction @ is
kept fixed and the incident angle is increased from 0’
until the pulses “11= and ’13” can be identified clearly
and t,, and t,] can be masured.  The constants c= and
c-,, can be determinti from the formulas,

(14)
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A simulated result for 0 = 2@ is shown in Fig. 9,
where [1, = 12.28 ps and t,, = 21.91 ps. Then C2
and Cz, can be calculated from (16) as 13.92 GPa and
6.92 GPa, respectively.
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Fig. 9. Reflected signal from a composite laminate for
t9==2@andd=9W.

c) Oblique insonification with @ less than the critical
angle @c.

Af t e r  c: and Cz, have bean determined, the
constant C55 can be found as follows. With fixed
incident angle 0, adjust ~ such that the pulses “22” and
’23’ can & idcmtlfltxl clearly. Then from measured
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tu, c~$ can be determind from the formula,

(%2-%yzJ  - %++ tin%%’]}
C55 -  —Ad- ~

sh%casz~ H 2H a:
(17)

A simulated result for 8 = 2@ and @ = 3&’  is shown
in Fig. 10, from which ~ = 22.42 p and k == 14.94
ps. Hence  CM can be determined from (17) as 7.08
Gpa.

1.5
4
g 1.0
.-
-a 0.5
E
< 0.0
‘u
o -0.5 i--

Q= 20°, q = 30°

““–*—””--——
2-2 23

Fig,. 10. Reflezted signal from a composite taminak  for
8 = 20° and d == 3@.

d) Oblique insonification  with @ = 0’

The remaining two unknowns cl, and cl~, can be
determined from this procedure. The time of fight tll
and t,~ can be identified by changing 6 from @ to an
anglr less than the first critical angle 0,. Then ~1 and
~z can be calculated from (6) and c,, and c,~ can be
drtermirwl  from the equations,

c11 -  [ -  ‘“ -a~--””—j
P(c55~~n20-PagX+~)

~H) *($2 /11 2
- c,,  c@- 2 ~- fi))w - c~~

‘l-he simulated results obtained for 0 =: 8° is shown in
Fig,. 11, with ~ = 17.95ps, tz, = 2S.43  p. Then Cl,

and cl~ are calculated from (18) to be 161.8 GPa and
6.46 GPa, respectively.
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g 1.()
.-
X 0.5
E
a 0.0

\ ..:
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T i m e  (Ps)

Fig. 11. Reflected signal from a composite laminate
e =8” and@=@.

for

SinW experiment d) is difficult to carry out due to
the small incident angle 0, an alternate method is
proposal to determine the remaining constant c1, and
c~~. Our calculations have shown that the reflected
field changes significantly near the critical angle m c-an
be seen from Fig. 7. Furthermore, the material
constants have a strong influence on the rdlwted
signals near the critical angle. To see this, the
reflected signals from a 25 mm composite laminate
with the original material constants and with the
reduced material ccrnstants are compared in Figs. 12
and 13. Fig. 12 shows that the arrival times of the
pulses ‘1 1”, “ 12” and “ 13” are strongly influenced by
the values of cl,. The same is true. for Clz as shown in
Fig. 13.

Fig. 14 shows the calculated arrival times of thr
pulses “1 1‘, “ 12”, md “13* with the original matenai
constants and with c1, reduced by 20% . Clearly, the
arrival times of these pulses are strongly affezted  by Cl,

near critical angle. We use this critical angle
phenomenon tc) determine the constants r-l, and Clz
Recall that the equation for the bulk wave sped V
awociated with the consLants  c1, and CI1 can be written
as

[(al -~,) + (r%-  @)2/%21% -  ~;

-- [(as  - V)z + (a, - @)(-  05 + alttj

+ a5(cJ*  - Qr~~~n~~2

where nl == cos @, n2 = sin f$. The constants  al, UA,
as can be derived from the known constants c=, cl,,

C5$, and the remaining unknowns a2 and a32 can be
related to cl, and cl? through e4. (4). In the critical
eases ~ = rj< and V = crolsin 0. Hence if we can
determine two critical angles from the experiment then
the unknouns  a: md  a32 can be calculated from a
system of linear equations. In this case, the two



critical angles are @C = 57.67” for O = 15°, and @C =
68.l@ for 6 = 2CP, so that Cll and c,2 can be calculated
as 161.12 and 6.14 GPa.,  resp@ively.

0= 20°, p = 68°
1.5
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d L’‘“
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: ::$ . }
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: - 1 . 0
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Fig. 12. Influence of the stiffness constant cl) on the
reflected signal.

+ = 20°, p = 68°
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Fig. 13. Influence of the stiffness constant cl? on the
rcflwttxl sipnal.

An error analysis is carried out in each step of the
experiments to determine the accuracy of the proposed
technique. as follows:

b) Oblique insonifiution  with @ = 90’ and inc ident
mgle O > O“.

w h e r e  6(: = cosd &l/aO,  6(3 = (&13 - &33 12)IH
If&? = ~O. ]” and c5r = 0 .02 ps, then 6CZ, = +0.012
GPa.

c) Oblique insonification  with r#I less than the critical
angle 4,.

]fM = iO. ]0and6r = 0,02 gs, then&~~ = ~ 0 . 1 1
GPa. From the shove analysis, it can be seen that the
constants determined in steps (a), (b) and (c) are very
accurate and small errors in the data have small effwts
on the constants cl,  and C12.

ORIGl!iAl
- -  C,l RE:DLCFI)  2 0 x

19 = 20°

- ;l:)l

:
c). () -Trl ~,- T-. . ..--... -7-

‘1 I~..  .T~,  . , , ~-. ,1- ,~-, –-. , ~T. –, , 4
(3 10 20 30 40 50 60 70 80 90

ORIEYTATIOS  (DEG)

I’lg. 14. Influence of the stiffness constant c1, on the
tin I\’al !imc of the reflected waves.

d) Oblique insonificaticm  with @ = @

Since the equations for the determination of the
constants cl, and cl: are very complicated, numerics]
estimates of the errors analysis were carried out and
are presented in Fig. 15. It can be seen that the errors

in both cases are smaller than 10% if &ll and brll are
les than 0.1 P*Z. The errors in c,, remain very small

for br,l and hr,~ up to 0.5 p=. However, the error in
cl: becomes  very large w h e n  M becomes larger .
Hence, it is necessary to control the accuracy of thr
arrival time under O. 1 ps to accurately evaluate Cit.

e) Critical angle experiment:

AS in d) it is difficult tc] obtain analyti~l estimates
of the errors in an explicit form in this case. So we

computed the errors by changing mea-wred  @ and 0 by
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Fig. 15. Errors in c,, and CIJ due to small errors in II,,
and rlz.

small amounts near the critical angles. lle results are
given in table 1. We can see that the errors in Cll and
cl~ induced by measurement errors are small. Hence,
this procedure can be an accurate method for practical
application.

Tat~lc 1. Errors in C-II and C,2 due to errors in o, and O.

er70rs  in calculated
4,! $ c,, c 1:

--------------------- --------

-0.1, -0.1 163.11 5.23
0.0, 0.0 161.12 6.14
0.1, 0.1 159.17 6.95

V. Concluding RernaIs

~le proposed method appears to be efficient and
accurate in characterizing all 5 stiffness constiusts of a
unidirwtional  fiber-reinforced composite laminate. The
error  analysis shows that the determined constants are
insensitive to small errors in the data. Extension of
work will provide a nondestructive procedure that can
de[cmune  the degree of materials degradation i n
unidirectional as well m multilayered composite
systcnls.
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